Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability.

نویسندگان

  • Lijing Hao
  • Hui Yang
  • Chang Du
  • Xiaoling Fu
  • Naru Zhao
  • Suju Xu
  • Fuzhai Cui
  • Chuanbin Mao
  • Yingjun Wang
چکیده

Self-assembled monolayers (SAMs) of alkanethiols on gold have been employed as model substrates to investigate the effects of surface chemistry on cell behavior. However, few studies were dedicated to the substrates with a controlled wettability in studying stem cell fate. Here, mixed hydroxyl (-OH) and methyl (-CH3) terminated SAMs were prepared to form substrates with varying wettability, which were used to study the effects of wettability on the adhesion, spreading, proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) from human and mouse origins. The numbers of adhered human fetal MSCs (hMSCs) and mouse bone marrow MSCs (mMSCs) were maximized on -OH/-CH3 mixed SAMs with a water contact angle of 40~70° and 70~90°, respectively. Hydrophilic mixed SAMs with a water contact angle of 20~70° also promoted the spreading of both hMSCs and mMSCs. Both hMSCs and mMSCs proliferation was most favored on hydrophilic SAMs with a water contact angle around 70°. In addition, a moderate hydrophilic surface (with a contact angle of 40~90° for hMSCs and 70° for mMSCs) promoted osteogenic differentiation in the presence of biological stimuli. Hydrophilic mixed SAMs with a moderate wettability tended to promote the expression of αvβ1 integrin of MSCs, indicating that the tunable wettability of the mixed SAMs may guide osteogenesis through mediating the αvβ1 integrin signaling pathway. Our work can direct the design of biomaterials with controllable wettability to promote the adhesion, proliferation and differentiation of MSCs from different sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The correlation between osteopontin adsorption and cell adhesion to mixed self-assembled monolayers of varying charges and wettability.

Osteopontin (OPN) is a key mediator of cell interactions with biomaterials. However, few studies have been dedicated to studying cell adhesion on OPN-adsorbed substrates with controlled charge and wettability. Here, amino-carboxyl (NH2/COOH) and hydroxyl-methyl (OH/CH3) mixed self-assembled monolayers (SAMs) of varying charges and wettability, respectively, were used as controllable model surfa...

متن کامل

The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers.

The objective of this study was to compare the biological effects of two key cell-adhesive proteins, fibronectin (FN) and vitronectin (VN), upon adsorption onto molecularly-designed model surfaces. Single-component and mixed self-assembled monolayers (SAMs) of alkanethiols on gold with OH and CH(3) terminal groups were prepared at 100%, 65%, 36% and 0% of OH at the surface, to generate a range ...

متن کامل

Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers.

The attachment of bacteria to solid surfaces is influenced by substratum chemistry, but to determine the mechanistic basis of this relationship, homogeneous, well-defined substrata are required. Self-assembled monolayers (SAMs) were constructed from alkanethiols to produce a range of substrata with different exposed functional groups, i.e., methyl and hydroxyl groups and a series of mixtures of...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

Osteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model

BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials chemistry. B

دوره 2 30  شماره 

صفحات  -

تاریخ انتشار 2014